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Abstract  

This work is devoted (a) to discussing some problems related to the quantization rule for 
constrained classical models of Fermi type, and (b) to working with some detail a specific 
model which is a classical analogue of the quantum Fermi systems. The quantization of 
this model is shown to depend on the addition of a total time derivative to the correspond- 
ing Lagrangian. 

1. Introduction 
1.1. General 

The basic purpose of this work is twofold: (i) to discuss some problems 
concerning the quantization rules of  classical systems, and (ii) to look for a 
classical analogue of the quantum Fermi systems in a sense that will be 
specified below. 

Let us remember that there exists a clear asymmetry in the standard 
exposition of  the quantization procedure for ordinary (unconstrained) 
classical systems, for besides the quantization rule 

i(,}_ ---> [,]_ (1.1.1) 

valid only for integer-spin (Bose) systems, a corresponding one valid for half  
integer-spin (Fermi) systems is not presented. An important  step towards 
the treatment of  both Bose and Fermi systems on an equal footing has been 
given by Droz-Vincent (1966), who has shown that, besides the usual 
(skew-symmetric) algebraic structure, there exists another, symmetric, 
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structure for ordinary classical systems. This structure is characterized by 
the existence of a new bracket, {,}+ (called a 'plus Poisson bracket') 
which is the symmetric partner of the usual (minus) Poisson bracket [see 
(2.2)]. This suggests setting up the rule 

~:{,}+ -+ [,1+ (1.1.2) 

which is the counterpart of (1.I.1) valid now for the quantization of the 
(eventually existing) unconstrained Fermi-like classical models. r is a 
parameter of the theory whose values will be discussed below [see also 
Franke & K/dnay (1970)].-~ 

The quantization procedures based in (1.1.1) and (1.1.2) must be modified 
to encompass an important class of classical problems for which, as Dirac 
(1950, 1951, 1958, 1964) showed, the ordinary canonical formalism fails. 
For these systems the canonical coordinates and momenta are not indepen- 
dent, but are bound to satisfy a certain type of constrains O"(q,p) 

0" ~ 0 (1.1.3) 

called second-class constraints.;~ The second-class constraints form a 
subset of  the whole set of constraints which may exist in the problem. They 
are characterized by the existence of the matrix [I C2bll defined by 

C2b{O b, Oc)_ -- 8,~ (1.1.4) 

Dirac has shown that for these systems (called here 'constrained systems') 
the quantization rule (1.1.1) is not consistent and must be modified by the 
introduction of a new bracket (called a 'Dirac bracket'), which has the form 

{F, G}_* - {F, G}_ - {F, Oa}_ C2b{O b, G}_ (1.1.5) 

In terms of it, the quantization rule for constrained Bose systems reads 

i{,}_* ~ [,]_ (1.1.6) 

Recently, the above considerations have been extended in order to treat 
constrained Fermi-like systems (Francke & K~ilnay, 1970). This was done 
by showing the existence of a dual symmetric partner of the (minus) Dirac 
bracket, (1.1.5). This bracket (called a 'plus Dirac bracket'), is given by 

{F, G}+* = {F, G}+ - {F, Oa}+ C+{O b, G}+ (1.1.7) 

Here, the set of plus second-class constraints 0 ~ is such that the matrix 
][C,~]I, inverse to the matrix of the plus Poisson brackets between the O's, 
exists [cf. equation (1.1.4)]w 

"~ They have set ~ = i. However, see below. 
The weak equality sign ~ ,  introduced by Dirac, means that equality to zero can be 

used in an equation only after all brackets (or partial differentiations) have been calculated. 
w For simplicity we use the same symbol 0 to denote a plus second-class constraint or 

a minus second-class constraint. However, notice that both subsets of constraints are 
usually different [see equations (1.1.4) and (1.1.8)]. 
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c (o 0%  -- (1.1.8) 
Constrained classical Fermi-like systems must then be quantized according 
to 

~:(,)+* --> [,]+ (1.1.9) 

Relations (1.1.2) and (1.1.9) close the previously existing gap regarding the 
quantization of classical systems. The resulting scheme is valid for both 
ordinary or constrained systems of Bose or Fermi type. 

1.2. The Parameter 

As we have shown above, the quantization problem for both Bose and 
Fermi systems can be formally treated in a very symmetric way. Neverthe- 
less, there exists an important difference between the two cases. To ascertain 
where this difference lies, let us consider first the rules (1.1.1) and (1.1.6). 
The stronger argument in favour of the hypothesis of the universal validity 
of (1.1.1) is, of course, its capability of verification for all systems for which 
both the (unconstrained) classical and quantum Bose models are separately 
known to be correct descriptions of the respective rrgimes. With regard to 
(1.1.6), it is important in our context to note that, as the Dirac bracket is 
the natural generalization for constrained systems of the Poisson bracket, 
taking the same i factor in (1.1.6) as in (1.1.1) it amounts to do an unicity 
hypothesis concerning the quantization rules.t An identical hypothesis has 
been made when writing the same parameter ~: in (1.1.9) as in (1.1.2), but, 
as we are going to see, some other elements must be considered. 

The whole quantization problem for Fermi systems is of a somewhat 
different nature when we realize that the quantization of the classical models 
of some well-known Fermi systems (e.g. a plasma) has not been studied yet 
in connexion with quantization rules like (1.1.2) or (1.1.9). Consequently, a 
verification of (1.1.2), for example, has not been made. Although such 
verification can be in principle undertaken, to do it is not, however, the 
purpose of this work; instead, we are interested here in some problems 
related to the theoretical consistence of the quantization scheme. We are 
interested particularly in the possibility of constructing classical analogues, 
i.e., classical models which formally reproduce the known (quantum) 
Fermi systems when the rules (1.1.2) or (1.1.9) are used. Turning to the 
parameter ~:, we see that if we had studied an unconstrained classical 
analogue of some Fermi system, then the (real) value, or values, of it could 
be determined. The rules (1.1.2) and (1.1.9) would then be fully specified. 
A reason why we are interested in leaving open the values of ~: is that, as far 
as we know, such classical analogue has not been studied (or even its 
existence proved). Furthermore, we are going to consider in Section 3 a 
classical model which corresponds, via the rule (1.1.9), to the second 

"[" This hypothesis is not a weak one because the complex character of the Dirac bracket 
(1.1.5) depends in general on the constraints. We are then, in fact, restricting the c/ass of 
constraints (and then of Lagrangians) which are to be present in the classical models of 
Bose systems. 
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quantized Fermi systems, for  all values of  ~ ~ 0 in the complex domain. In 
this model the set of values ~: can take is in correspondence with Lagrangians 
which differ from each other by a total time derivative. If  we make the 
hypothesis of a unique value of ~, then all these 'equivalent' Lagrangians 
give rise, in fact, to different quantized systems. We may try to avoid this 
considering, for example, that there exists an intrinsic ambiguity in the 
rule (1.1.9) which permits all values of ~ ~ 0. Even in this case, we shall be 
led below to the conclusion that the addition of a total time derivative to 
our Lagrangian is relevant to the quantization scheme for Fermi-like 
systems. 

2. Notations and Conventions 

The sum conventionis used in any place as well as h # 1 unless the contrary 
is explicitly stated. 

The coordinates of the classical model to be worked out below: a~, 
r - 1, 2 . . . .  , N, and its complex conjugated d~, are concisely denoted by aAr 
with 

aar =- 3A1 at, A7 ~AII tit' (2.1) 

Here and elsewhere, the capital index takes the values I and II. The corres- 
ponding canonically conjugate momenta are Par, but Pm is not necessarily 
equal to p~. 

Brackets. Commutators and anticommutators are denoted by square 
brackets: [,]+. Curly brackets indicate (ordinary) minus Poisson brackets 
and plus Poisson brackets: 

OF OG OF OG 
{F, G}+ -- {r(a,p), G(a,p)}+ =- - - - -  ~ - - - -  (2.2) 

- OaAr ~Par ~Pa~Oaa~ 
where 

a --= ( a i l ,  . . . ,  alN, a n l , .  � 9  anN)  

P --- (Pn . . . . .  PIN, Pro . . . .  ,PnN) 

Curly brackets with an asterisk denote plus and minus (ordinary) Dirac 
brackets: {,}+*. [They are defined by (1.1.5) and (1.1.7).] 

Matrices. ~AB and e~B(~') are the elements of the 2 • 2 matrices 

0 1 1 0 ~,_ 
l[~A.II --- 1 ; and [[ ~rAn(~')n --= 2. ~' + i 0 ~ (2.3) 

~' is an arbitrary complex parameter. 
Operators are denoted by symbols with a circumflex, and a dagger means 

Hermitian conjugation. 

3. A Classical Analogue of  Fermi Systems 

Let us consider the model Lagrangian 

L~, (a , , i )  = r  ~'~B(~') a~t" - ~ o r  a~,  ~ a ~  - ~ ( a )  (3.1) 
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where the oJ's are some characteristic constants and @'(a) is a real differenti- 
able function of  the coordinates. 

The canonical momenta and the Hamiltonian derived from (3.1) are 

PAr = a~B(~') as,. (3.2) 
and 

H =1  + qd(a) (3.3) -2o) r a z r  (TAB an~. 

The canonical coordinates and momenta are then not independent but 
satisfy the primary constraints 

A t _ _  , t 
Ce' =PAr -- aaB(~ ) a,r ~ 0 (3.4) 

To find the canonical equations we must then resort to Dirac's generaliza- 
tion of  the ordinary Hamiltonian theory (Dirac, 1950, 1951, 1958, 1964). 
The corresponding equations are 

d aH ~r (3.5a) 

aH ar ~, (3.5b) 
1)Ar = aaAr UB~ aaAr 

where the uB,'s are non-canonical variables which take into account the 
existence of the constraints (3.4). As the Hamiltonian (3.3) does not depend 
on the momenta, and as the constraints are linear in them, it follows from 
(3.5a) that 

uB, --- riB, (3.6) 

This result was to be expected, because the defining relations (3.2) do not 
permit the obtaining of the velocities in terms of the canonical coordinates 
and momenta. These velocities then appear as additional variables in the 
formalism. By substitution of  (3.6) in (3.5b) we are led to 

Oq/' 
PAr = --f'Or O'AB aBr + dBr aBA(~:') - OaA~-- r (3.7) 

which, after using (3.2), becomes the following differential equations for 
the coordinates 

( , , L , ( # )  - ,r  a,,r = ~ r  '~ A,, a,,r + OaA~--. (3.8) 
These equations are equivalent to 

Oak, 
dr = ir a,. + i - -  (3.9) 

ao, 

and the one obtained from it by complex conjugation.t 
It follows from (3.3) and (3.9) that our model represents nothing but a 

i of  course, equations (3.8) and (3.9) can also be obtained as the Euler-Lagrange 
equations of (3.1), but, as pointed out by Dirac, the canonical formalism is the best 
starting-point to quantization. In equations (3.7)-(3.9) the index r is not a dummy 
summation index. 
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standard system of harmonic oscillators of frequencies w, and coupling 
energy ~/. What is not standard is the form (3.1) of the Lagrangian, the 
first term of which is responsible for the existence of the constraints. These 
constraints play an essential role in the process of quantization. In general, 
additional, secondary constraints may arise as a consequence of the fact 
that the primary ones must hold for any time, i.e. they must satisfy 
JAr ,~, Ar e , ~  0. As the ~ ,  are linear in the momenta, the manipulations made 
above show at once that the consistence equations will reduce in fact to 
(3.6). In other words, there are no secondary constrains in our problem. 

Let us now consider the quantization problem. For this it is crucial 
what class the constraints (3.4) are. As we are primarily interested in the 
possibility of quantizing the model (3.1) according to a symmetric rule, the 
plus Poisson bracket between the ~ ,  must be calculated. They are easily 
found from (3.4) as 

B s  - -  , i �9 ! 

= -~ '  8,s CrAB (3.10) 

The constraints are then first class if ~' = 0 and second class otherwise. Let 
us take for the moment the later case. When the constraints are second class 
the quantization must proceed by determining the algebra of classical 
variables as defined by the symmetric Dirac bracket relations. We now 
calculate them for two general dynamical variables: F(a,p) and G(a,p). 

Note first that in virtue of (3.10) the matrix elements C + A,,B~ are simply 

C+r.B~(~') = --~:' - 1 3r~ ~r AB (3.11) 
Furthermore, we have 

OF or' ~' OF 
{F, ~,}+ Oa,~ ,a( ) o-P-~A~ (3.12) 

and the corresponding expression for G. Combining (1.1.7), (3.11) and 
(3.12) we are led to 

OF 
{F,G}+* { F , G } + + ~ : ' - I ~  (~f~f = , )  

tTB D 
\ -  ~ l J r  

r 

• CrDc(~ ) 0-Pccr) (3.13/ 

or, in a more explicit form, to 

�9 OG 

• ~(~ - t) 0-~,,,) (3.14) 

(3.13) or (3.14) is the general Dirac bracket relation we looked for. It is 
known, however, that the standard rule of quantization (I.1. I) is consistent 
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only when applied to the elementary variables of the theory, i.e., canonical 
coordinates and momenta (Peirls, 1952; Bergmann & Goldberg, 1955). 
The same happens with (1.1.6). Thus we only need here the brackets between 
the a's andp 's  which from (3.13) take the form: 

{aA,, an,}+* = ~ ' - '  ~,, ~ran (3.15a) 
{aA,,p,,}+* = ~'-1 ~r, ~rzc crBc(~') (3.15b) 

, _ _  r - I  ~ t t t {pAr, p~,}+ - ~ *r, ~cA(~ ) ~co ~ ( ~  ) (3.15c) 
It follows from this that if we quantize our classical model according to 
(1.1.9), setting ~: = ~', the quantum a-variables that are such that 

air -~ at "-+ fir 
ant = 6 ---> dr* (3.16a) 

will satisfy the commutation relations 

[d, ,dJ]+=Sr,;  [dr, dA+ = [drt,~J]+ = 0  (3.17) 

These are characteristics of the creation and annihilation operators of a 
Fermi system, the states of which are labeled by the index r. According to 
this (3.3) and (3.9) we see that the model we have worked out is a classical 
analogue of the well-known (second quantized) systems of Fermions. 

The model we are considering is then an example ofa quantization process 
via the rule (1.1.9) which is well defined up to an arbitrary complex factor 

= ~' # 0. As can be seen from (3.1), the different values of ~' correspond 
to Lagrangians which differ by a total time derivative.t This way we arrive 
at the (real) Lagrangian corresponding to the singular value r = 0. In this 
case the Dirac bracket is not defined because, as it was found above, the 
constraints (3.2) are all first class. The only symmetric rule of quantization 
we have then at hand is (1.1.2). Nevertheless, this rule gives bracket relations 
essentially different to (3.15). Now, a quantized system is defined not only 
by its equations &mot ion  but also by the algebra of its canonical variables. 
The above discussion then shows that two Lagrangians which differ from 
each other by a total time derivative may give rise to two different quantized 
systems~:. 

It is worth to note finally that our model can also be quantized according 
to the skew-symmetric rule (1.1.6). The problem is simpler here because a 
calculation, similar to that made above, shows that irrespective of the 
value of s e', we find (a) the constraints are always second class, and, (b) the 
quantization rule is uniquely defined and it coincides with (1.1.6). The 
question arises if in more general cases changing the Lagrangian by a total 
time derivative may produce also essential changes in the quantum operators 
algebra derived from the skew-symmetric quantization rule (1.1.6)w 

~ Note, however, that the Hamiltonian (3.3) does not depend on ~:'. 
A strictly parallel situation is found when quantizing the Dirac Field (Kfilnay, 

1971). 
w K~tlnay, A. J. and Ruggeri, G. J. Gauge-Variance of the Dirac Brackets. (To be 

submitted for publication.) 
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4. Summary  

The main results of  this work are twofold (a) a constrained classical 
analogue of Fermi systems has been constructed, t and (b) in the light of  this 
model at least two general questions related to the quantization rules for 
Fermi-like systems arise, which require further investigation. These ques- 
tions are connected with, on the one hand, the eventual ambiguity of  these 
rules, and on the other with its sensitivity to the change of the Lagrangian 
by a total time derivative. I f  the quantization scheme is taken for granted we 
are led to conclude that two Lagrangians which differ from each other by a 
total time derivative define, in general, different quantized systems. 
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